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Introduction   
Understanding human relationship is a complex task, let alone their behaviours within a 

group. In a given situation, human’s interaction in a group is influenced by a myriad of factors which 
might not always be transferrable to different situations. Being the front runner in understanding 
human relationship, psychology has established several paradigms to explain the topic of interest. One 
paradigm that has received substantial academic attention since its birth in the early 1970s is social 
identity theory. Social identity is not simply a theory that explains the motives behind individuals’ 
identifying of ingroup and outgroup, but it also encapsulates a set of theories and hence, providing 
clear theoretical framework to delineate how individuals embrace a social identity and how that 
influences the way individuals behave towards their ingroup as well as outgroup (Tajfel, 1974, 1981).  

Notwithstanding the great contribution of social identity theory, the understanding of human 
relationship appeals for an advancement in determining the social structure of human relationship. 
This is where social network analysis (SNA) comes into play. Previously, scholars rely heavily on 
individuals’ attributes to determine their interaction with others (Scott & Carrington, 2015). This 
causality approach, however, ignores the structure that coexists within the relationship. While 
causality approach would argue that those who behave in a similar way are due to their having similar 
attributes, SNA argues that these similar behaviours occur not only due to their similar attributes but 
the fact that individuals with similar attributes often occupy a similar position in social network. 
Hence, similarities among individuals are explained by their psychological conditions caused by the 
similar network position.   
 In contrast, sociology has long embraced SNA as a way of gaining understanding of 
individuals’ social interactions. This dates back to the work of Georg Simmel who famously posits that 
understanding social ties are the primary importance in the work of sociologists (Scott & Carrington, 
2015). He proposes that sociologists should focus on studying the interaction patterns, which is known 
as forms, rather than the individuals’ attributes, which is known as content. In looking at a broad 
human interaction, Simmel argues that individuals do not become a society simply because of their 
same motives, but they become a society because they perceive reciprocal influence of their attributes. 
 Today, the emphasis on the social structure have now been acknowledged to be useful in 
explaining human behaviours. In health psychology, the structure of social network, e.g., density, size, 
has been found to correlate with individuals’ health attitudes and behaviours (Shelton et al., 2019). 
Meanwhile, the functional aspects of social network, e.g., social support, social norms, have also been 
demonstrated to associate with the individuals’ health. In social psychology, SNA has been employed 
to unravel the phenomenon of terrorism and political violence (see Perliger & Pedahzur, 2011). All this 
indicates a growing importance of SNA use in the study of psychology. In line with this, we aim to 
propose the use of graph theory, as part of SNA, to analyse social networks.  

Specifically, we propose to use graph theory to explain the vulnerability of individuals’ social 
network. It is worth mentioning that later in practice the use of graph theory should also be 
complemented by additional information on the social actors, such as individual’s gender, age, social 
economic status, etc. To give a complete picture of our theoretical framework, we will first provide a 
brief theoretical background of graph theory. Next, we will introduce a Social Edge Component 
Order Connectivity Analysis to measure a social network vulnerability. Finally, we end the chapter 
by giving our concluding remarks on the potential use of graph theory in explaining social network 
vulnerability.  

 

Discussion 
1. Brief theoretical background on the use of graph theory in social network analysis 
In graph theory, a social network is conceptualized as a graph, which is a set of nodes (or often also 
called vertices) or simply persons which are connected with edges (or also known as lines) or social ties 
among them (Kadushin, 2002). In more mathematical terms, a graph   (   )  or  , consists of a 
finite non-empty set of nodes   and a set   of two element subsets of  . If *   +   , we say that 
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*   + is incident at the nodes   and  , and that   and   are adjacent. If | |   ,   is referred to as 
an (   ) graph;   is the order of G and   is size of G.  
 
A specific example of a graph   is given by   *                       +, and 

  {*     +*     + *     + *     + *     + *     + *     + *     + *     + *     + *     +}   
If it is convenient to do so, we usually represent the graph pictorially, e.g., Figure 1 depicts the graph 
given in the example.  
 

 
 

Figure 1. A pictorial representation of a graph. 
 
Connectedness 
A desirable property for networks such as social networks is that each node is able to send messages to 
all other nodes, if not directly then by relaying through other nodes. In terms of the graph that models 
the social network, the desired property is that the graph is connected. Therefore, we introduce some 
basic notions related to connectedness. 
 
A walk in a graph   is an alternating sequence of nodes and edges,                           where 
   *       + for         . It is closed if      , and is open otherwise. Since   has no multiple 
edges or loops, it suffices to suppress the edges and just list the nodes in order of appearance. 
 
A path in a graph is walk in which no node is repeated. If a walk is closed, then it is a cycle provided 
             are distinct and    .  
 
A graph   is said to be connected if for all pairs of distinct nodes   and   there exists a walk 
(equivalently a path) joining   and  . A disconnecting set of a graph is a set of edges which renders 
the graph disconnected upon removal.  
 
In the labeled graph   of Figure 1,                      is a walk, which is not a path,                is 

a path, and             is a cycle. The graph   is connected and {*     + *     +} is a disconnecting 

set. 

A graph   ( ( )  ( )) is a subgraph of a graph G, denoted H   G, if  ( )   ( ) and  ( )  

 ( ). If  ( )   ( ), then   is called a spanning subgraph. Therefore, a spanning subgraph may be 
viewed as a graph obtained by the removal of a set of edges. For any set    , the induced subgraph 
〈 〉 is maximal subgraph of   with node set  , and the edge set is the subset of  ( ) consisting of all 
edges with both endpoints in  . For any set    , we use 〈 〉 to denote the edge induced subgraph of 
G whose edge set is F and whose node set is the subset of N(G) consisting of those nodes’ incident with 
any edge in F. If    ( ), we write     for the subgraph 〈   〉. If    ( ) then we write G – F 
for the subgraph (N(G), E(G) – F). In general G – F is not 〈   〉.  
 
If W is a maximal subset of N such that 〈 〉 is connected, then 〈 〉 is called a component of G. Observe 
that G is connected if and only if G has one component. 
 
The degree of a node v in a graph G, denoted by deg v, is the number of edges incident with v. In a 

(n, e) graph, 0   deg v   n-1 for every node v. The neighborhood of a node v, denoted by X(v), is the 
set of nodes which are adjacent to v. The degree of a node is thus the cardinality of its neighborhood, 
i.e., deg   | ( )|. The minimum degree among the nodes of G is denoted  ( )     *    |   + 
and the maximum degree is denoted  ( )     *    |   +.  
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Since each edge has two end-nodes, the sum of the degrees is exactly twice the number of edges: 
   ∑      

 
    ( )     (2.1) 

Hence 

    ( )  ⌊
  ( )

 
⌋     (2.2) floor 

and  

    ( )  ⌈
  ( )

 
⌉     (2.3) ceiling 

 
A graph is complete if every pair of nodes are adjacent. We write    for the complete graph of order 

 . It follows that the size of     is (
 
 
)  

  

(   ) ( ) 
 
 (   )

 
.  

 
The utilization of graph-theoretic networks has grown tremendously in the last decade, for 

activities such as transmitting voice, data, and images in social media around the world. Regarding the 
widespread needs upon such networks, it will be so important to find topologies that give a high level 
of reliability and a low level of vulnerability to disruption. Consequently, it becomes necessary to 
consider quantitative measures of a network’s vulnerability, here in domain of social networks. To 
achieve such measures, we will model social network in a graph in which the group or people are 
represented by the nodes of the graph and the communication among them are represented by the 
edges.  
 

2. Social Edge Component Order Connectivity Analysis 
Conventionally, the connectivity and edge connectivity parameters have been used to measure 

a network’s vulnerability to disconnection, due to failure of nodes or edges, respectively. One 
shortcoming of these measures of vulnerability is that they do not take into account the orders of the 
resulting components. For example, no distinction is made between a case where failure of edges 
results in two components of equal order, and the case where one of the components is an isolated 
node. For some network applications, it may be enough that a certain number of nodes can maintain 
communication after edge failure for the network to be considered operational, even if the network is 
disconnected. We introduce a new parameter, known as   component order edge connectivity. 
Since, we are going to apply in social interaction, we call as ―Social Edge Component Order 
Connectivity Analysis‖ (SECOCA), to address this notion. Component order connectivity was 
introduced as a measure of vulnerability in which it was concluded that nodes are subject to failure but 
edges are not (Boesch et al., 1998; Suhartomo, 2012).  
 Before we explain the notion of SECOCA, it is important for us to first introduce a classical 
network vulnerability. According to graph theory, (node) connectivity and edge connectivity are 
suggested to measure the ―vulnerability‖ of a social network (graph) to disconnection upon failure of 
nodes or edges, respectively. Specifically, the (node) connectivity  ( ) is the minimum number of 
nodes required to be removed so that the surviving subgraph is disconnected or trivial (i.e., a single 
node).  
 
The edge connectivity  ( ) is the minimum number of edges required to be removed so that the 
surviving graph is disconnected. It is given that,  
 

 ( )   ( )   ( )  ⌊
  

 
⌋     (4) 

 
Figure 2 provides an example of this result. 

 

 

Figure 2. A graph with  ( )     ( )     ( )    ⌊
  

 
⌋    

 
In many networks, disconnection may not guarantee that the network can no longer perform 

the function that it was designed for. If there is at least one connected piece which is large enough, the 
network may still be considered operational. Hence there are inadequacies inherent in using 
connectivity or edge connectivity as a measure of vulnerability. A concrete example of this deficiency is 
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shown in Figure 3. The graph G of order 101 has  ( )   ( )   . However, the subgraphs   –    and 

 – *   + have components of order 99 and 100, respectively. 
 

 
Figure 3 A graph with )(G  = 1 

 
It is reasonable to consider a model in which it is not necessary that the surviving subgraph is 

connected so long as it contains a component of some predetermined order. Boesch et. al (1998) 
introduced a new vulnerability parameter called    component order connectivity, which is the 
minimum number of nodes required to be removed so that the surviving subgraph contains no 
component or order at least some prescribed threshold. In this discussion we introduce the analogous 
parameter which is applicable for the removal of edges.  
 

The New Edge Failure Model 
In the conventional edge-failure model it is assumed that nodes are perfectly reliable, but 

edges may fail. When a set of edges F fail, we refer to F as an edge-failure set and the surviving 
subgraph     as an edge-failure state if     is disconnected. 
 
Definition 1. The edge connectivity of G, denoted by  ( ) or simply  , is defined to be  ( )  

   *| |                             +  i.e.,   –    disconnected. 
Therefore, it is reasonable to consider a model in which it is not necessary that the surviving 

edges form a connected subgraph as long as they form a subgraph with a component of some 
predetermined order. Thus, we introduce a new edge-failure model, the   component order edge-
failure model. In this model, when a set of edges F fail, we refer to F as a   component edge-failure 
set and the surviving subgraph G – F as a   component edge-failure state if     contains no 
component of order at least  , where   is a predetermined threshold value.  
 
Definition 2. Let       be a predetermined threshold value. The k-component order edge-

connectivity or component order edge-connectivity of G, denoted by   
( )( ) or simply   

( )
, is 

defined to be   
( )( )     *| |                                      +, i.e., all component of 

    have order     . 
 

Definition 3.3. A set of edges F of graph G is   
( )  edge set if and only if it is a   component order 

edge-failure set and | |    
( )

. 

Next, we apply )()( Gk

c  for specific type of graphs. 

2.1.  Star Graph 

 
Figure 4 Star with        

 

The first type of graph we consider is the star, 1,1 nK . 

Theorem 5.1: Given         
( )(      )        

2.2.  The next type of graph we consider is the path on   nodes,   . 

 
Figure 5 Path with    
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Theorem 5.2: Given         
( )(  )  ⌊

   

   
⌋. 

 
2.3.  The next type of graph considered is the cycle on n nodes,   . 

 
Figure 6 Cycle with    

Theorem 5.3: Given         
( )(  )  ⌈

 

   
⌉. 

 
2.4.  Next type is complete graph with   nodes,   . 

 
From this it immediately follows that a maximum size   component edge-failure state of    

consists of ⌊
 

   
⌋  complete components each of order     and possible one additional component of 

order less than    . Thus, we have the following: 

Theorem 5.4. Given         
( )(  )  (

 
 
)  ⌊

 

   
⌋ (
   
 
)  (

 
 
), 

where, 

  ⌊
 

   
⌋ (
   
 
)             

 

Conclusion 
  By far, we have shown that graph theory can be utilized in scrutinizing the vulnerability of a 
social network. By having values of n and k, we have demonstrated that we can calculate a social 
network vulnerability. This has substantial implication on the development of social psychology. For 
scholars who are interested in unravelling terrorism and intergroup conflicts, they can apply the new 
edge failure model to identify the vulnerability of the target group. In addition, focusing on the 
structure of the social networks enables us to identify social position for each actor and the type of 
relationship involved among actors. These relational patterns can be used to make conclusion of the 
group’s decision making and the individual and group’s activity. In health domain, with the aid from 
data on individuals’ characteristics, researchers can identify the level of vulnerability of self-help group 
in promoting healthy behaviours and how the change of attitude is spread throughout the group. Based 
on all this, we encourage scholars to explore group dynamics using SNA and graph theory, both as a 
method as well as theory, to expand our understanding of the influence of individual attributes on 
relational patters and the influence of relational patterns on the outcome of group’s collective action.   
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